马里兰大学李腾教授Small:多主元素合金的机器学习加速、高吞吐量、多目标优化 2023年10月12日 下午10:07 • 头条, 干货, 顶刊 • 阅读 59 多基元合金 (MPEA) 因其在传统合金中前所未有的卓越性能而引起了广泛关注。然而,通过具有成本效益的设计从巨大的组成空间中识别具有所需特性的 MPEA 仍然是一个巨大的挑战。 为此,美国马里兰大学李腾教授等人开发了一种以属性为导向的MPEA设计策略,该策略将分子动力学(MD)模拟、小样本机器学习(ML)和遗传算法 (GA) 相结合,以高效地同时优化多个性能指标。 作为演示,ML模型可以通过54 次MD模拟进行有效训练,以预测CoNiCrFeMn合金的刚度和临界分辨剪切应力 (CRSS),相对误差分别为2.77%和2.17%。 图1. 数据生成、深度神经网络框架及ML模型的预测流程 这种设计策略也非常高效,比纯MD模拟的计算时间缩短了12600倍。基于经过训练的ML模型和非支配排序GA II (NSGA II)可以获得100种同时具有高刚度和高CRSS的CoNiCrFeMn合金的最佳成分,然后通过100000种随机选择的 CoNiCrFeMn成分的ML加速计算进行验证。 此处报道的整合MD、ML和GA的合理设计策略具有简便、超快、低成本和通用性的优势,可以应用于其他 MPEA材料系统,有望加速低成本地发现具有高性能的新MPEA。 图2. 基于ML的CoNiCrFeMn合金机械性能预测的准确性、效率和拟合优度 Machine Learning Accelerated, High Throughput, Multi-Objective Optimization of Multiprincipal Element Alloys, Small 2021. DOI: 10.1002/smll.20210297 原创文章,作者:科研小搬砖,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/10/12/c3fab7a7d1/ 电池 赞 (0) 0 生成海报 相关推荐 桑迪亚国家实验室AEM:由自组装聚合物涂层实现高放电深度锌负极 2023年10月26日 哈工大杜春雨Nat. Commun.:揭示单原子催化剂的结构-功能关系 2023年10月18日 吉大CEJ:光热转化原位加热对多金属氧酸盐@电荷转移络合物的强化催化氧化 2023年10月15日 宋术岩/施伟东Nature子刊:CuAu双原子协同作用,高效稳定光催化CO2转化为C2H4 2024年4月7日 【顶刊】南大金钟团队Nature子刊:新型聚合物微粒“泥浆”电池 2023年11月16日 他,苏大「国家杰青/科技创新领军人才」,最新AFM! 2024年10月24日