马建民教授AEM:用于4.6 V Li||LiCoO2电池的酰胺功能、富Li3N/LiF异质结构的电极电解质界面

马建民教授AEM:用于4.6 V Li||LiCoO2电池的酰胺功能、富Li3N/LiF异质结构的电极电解质界面
将LiCoO2的充电截止电压提高到4.6V可以提高电池密度。然而,结构不稳定性是一个关键挑战(例如,电解质分解、Co溶解和结构相变)。
马建民教授AEM:用于4.6 V Li||LiCoO2电池的酰胺功能、富Li3N/LiF异质结构的电极电解质界面
在此,湖南大学马建民教授团队构建了具有由极性酰胺基团和Li3N/LiF异质结构提供的高Li+电导率的稳定电极电解质界面(EEI)。其中,3-(三氟甲基)苯基异氰酸酯(3-TPIC)被合理设计为电解质添加剂,用于维持具有这种CEI的4.6V Li||LiCoO2电池,这可以有效地解决结构不稳定性的挑战。极性酰胺基团可以实现Li+脱溶剂化并增加Li+转运。正极电解质界面(CEI)中的Li3N/LiF异质结构可以加快Li+的插入/提取以提高库仑效率,并在4.6V下削弱LiCoO2的极化。
此外,在Li负极表面上具有类似结构的固体电解质界面(SEI)有助于均匀的Li沉积,以抑制Li枝晶生长。因此,具有优异EEI的4.6V Li||LiCoO2电池可以提供优异的电化学性能。
马建民教授AEM:用于4.6 V Li||LiCoO2电池的酰胺功能、富Li3N/LiF异质结构的电极电解质界面
图1. 空白和含有3-TPIC的电解质的MD模拟
总之,该工作提出了酰胺功能的、富含Li3N/LiF的异质结构的EEIs,它通过抑制Co离子的溶解和通过抑制Li枝晶的生长来稳定LiCoO2在4.6V下的传输。这种由3-PIC赋予的EEIs极大地改善了4.6V的Li||LiCoO2电池的电化学性能。极性的酰胺基可以促进Li+的脱溶剂化,增加Li+的传输。此外,Li3N/LiF异质结构可以加快Li+的传输。在极性酰胺基和Li3N/LiF异质结构的协同作用下,稳定的CEI可以防止LiCoO2的结构相变,并在循环中保持其结构的稳定性。
同理,稳定的SEI可以抑制锂枝晶的生长,保持锂负极的稳定性。因此,这项工作为通过添加剂设计功能良好的EEI提高钴酸锂在高电压下的循环稳定性提供了重要参考。
马建民教授AEM:用于4.6 V Li||LiCoO2电池的酰胺功能、富Li3N/LiF异质结构的电极电解质界面
图2. 空白和含有添加剂的电解液中Li||Li对称电池的电化学性能
Amide-Functional, Li3N/LiF-Rich Heterostructured Electrode Electrolyte Interphases for 4.6 V Li||LiCoO2 Batteries, Advanced Energy Materials 2023 DOI: 10.1002/aenm.202300084

原创文章,作者:科研小搬砖,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/10/08/cef806869e/

(0)

相关推荐

发表回复

登录后才能评论