剑桥大学Nature: 预测乳腺癌治疗反应的多组学机器学习预测器 2023年10月15日 下午10:09 • 未全平台发布, 顶刊 • 阅读 28 乳腺癌是恶性细胞和肿瘤微环境的复杂生态系统,这些肿瘤生态系统的组成及其内部的相互作用会促进肿瘤治疗时的细胞毒性反应。然而,值得注意的是,在未治疗的肿瘤中识别预测治疗反应特征的研究大多忽略了这一点。 在此,英国剑桥大学Carlos Caldas等人报道开发了一种乳腺癌治疗反应的多组学机器学习预测器。首先,作者收集了168名在手术前接受化疗+/- HER2靶向治疗的乳腺癌患者相关信息,包括治疗前活检的临床、数字病理学、基因组和转录组学特征,然后将手术时的病理学终点(完全缓解或残留疾病)与这些诊断活检中的多组学特征相关联。 结果表明,肿瘤治疗时的反应受治疗前微环境系统的调控,而这种微环境的多组学特征可以使用机器学习整合到预测模型中。 图1. 基因组特征与治疗反应单调相关 作者发现,治疗后残留疾病的程度与治疗前的多组学特征单调相关,包括肿瘤突变和拷贝数景观、肿瘤增殖、免疫浸润和T细胞功能障碍和排斥。 作者将这些特征整合到一个多组元机器学习模型中,并将其用于预测外部验证队列(75例患者)的病理完全缓解程度,其AUC值(ROC曲线下方的面积,用于衡量学习器优劣)为0.87。总之,患者对肿瘤的治疗反应是由通过数据整合和机器学习捕获的肿瘤生态系统总体的基线特征决定的,这种方法也可以用于开发其他癌症的预测器。 图2. 使用多组学机器学习模型预测治疗反应 Multi-omic machine learning predictor of breast cancer therapy response, Nature 2021. DOI: 10.1038/s41586-021-04278-5 原创文章,作者:v-suan,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/10/15/77ff415705/ 机器学习 赞 (0) 0 生成海报 相关推荐 何传新/杨恒攀JMCA: 原子配位数,高不一定好! 2023年10月16日 鲍哲南,最新Nature Nanotechnology! 2023年10月4日 段镶锋/黄昱夫妇联手发Science! 2023年10月12日 苏大Adv. Sci.:带正电Pt基纳米反应器助力高效稳定HER 2023年11月1日 杨剑/汪冬冬Angew.:动态锌/电解液界面及溶胶电解质增强的阳离子转移实现全天候水系锌金属电池 2023年9月30日 孙振华/张冬/岳惠娟CEJ:导电Fe2N/N-rGO促进宽温锂硫电池的电化学氧化还原反应 2023年10月25日